Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Uzma Azeem Awan

National University of Medical Sciences (NUMS), Pakistan

Title: Near infra-red responsive nano-platform for gene knockdown in breast cancer

Biography

Biography: Uzma Azeem Awan

Abstract

Nanomaterials and advanced nanotechnologies have sped up the creation of new biomedical protocols. Nanoparticle-mediated distribution of nucleic acids has been proposed as a major tool for modulating gene expression, whether by targeted gene silencing, interfering RNA mechanisms, or gene edition. Because of the ability to fine-tune their size, shape, and surface properties, as well as the ease of functionalization with different biomolecules, these novel delivery systems have heavily relied on nanoparticles. In particular, gold nanoparticles (AuNPs) have paved the way for efficient delivery systems as they have a unique light-to-heat conversion property that can be used to develop new and effective cancer therapeutics. Breast cancer is still the most commonly diagnosed cancer in women worldwide, putting their lives at danger. Nanomedicine, fortunately, has introduced new potential and hope to breast cancer research. Abnormally elevated expression of cyclooxygenase-2 (COX-2) has been frequently observed to regulate tumor growth, invasion and metastasis in breast cancer tissues. COX-2 selective and non-selective inhibition causes several adverse effects like renal, cardiac and gastrointestinal toxicity.

Herein, we provide a nano-platform made up of gold nanoparticles that conjugate and release COX-2 interfering oligos when illuminated with a near-infrared (NIR) continuous wave (CW) laser (808 nm) to precisely reduce endogenous COX-2 expression in breast cancer cells. Using gold nanoparticles coupled oligos followed by NIR laser exposure, the COX-2 protein expression level was considerably (p0.05) reduced by 78 percent after 72 hours when compared to their untreated counterpart. The effectiveness of gene silencing utilizing nanoparticles coupled with oligos without laser exposure was 36%. The decrease in protein level in NIR-activated cells against control sample demonstrates that NIR induced nano-platform has effectively interfered with COX-2 protein expression. Our findings highlight the promise of gold nanoparticle-mediated laser transfection as a gene interfering technique with spatial and temporal control, as well as a unique molecular therapeutic approach for the treatment of breast cancer.