Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series LLC LTD Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series LLC LTD : World’s leading Event Organizer

Back

31st Nano Congress for Future Advancements

London, UK

Daniil Karnaushenko

Daniil Karnaushenko

Institute for Integrative Nanosciences, Germany

Title: Shapeable material technologies – self-assemblying 3D mesoscopic electronics

Biography

Biography: Daniil Karnaushenko

Abstract

Electronic devices are continually evolving to offer improved performance, smaller sizes, lower weight, and reduced costs, often requiring state of the art manufacturing and materials to do so. An emerging class of materials and fabrication techniques, inspired by self-assembling biological systems shows promise as an alternative to the more traditional methods that are currently used in the microelectronics industry. Mimicking unique features of natural systems, namely flexibility and shapeability, the geometry of initially planar microelectronic structures can be tailored. Heavily relying on cylindrical geometry, fabrication of microwave helical antennas, coils, resonators and magnetic sensors is challenging, when conventional fabrication techniques are applied. Involving novel self-assembly strategies realization of these spatially non-trivial devices in a compact form and with a reduced number of fabrication steps become feasible. This spatial self-assembly process, triggered by an external stimulus, offers a possibility of an improved performance while reducing overall manufacturing complexity of devices and components by harnessing the relative ease in which it can produce mesoscopic 3D geometries such as a “Swiss-roll” architecture. These benefits can lead to tighter a system integration of electronic components including active electronics, capacitors, coils, sensors and antennas with reduced costs fabricated from a single wafer.