Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Andrew David Miller

Andrew David Miller

King’s College London, UK

Title: Progress in aligning nanomedicine with precision therapeutic approaches for the treatment of chronic diseases

Biography

Biography: Andrew David Miller

Abstract

Precision Medicine is considered by many to be a necessary future for the treatment for all diseases. Fundamentally, this can be divided into two subsections, namely personalized medicine and precision therapeutics. With personalized medicine, the aim is to understand the genetic, immunological and/or metabolic individuality of patients in order to match individual patients with the most appropriate active pharmaceutical ingredients (APIs) for treatment of their particular disease(s). With precision therapeutics, the aim is to take control of the delivery of APIs to disease target tissue, by means of nanomedicine, and/or make use of select APIs that have extreme target specificity. The focus of this lecture is in precision therapeutics, as demonstrated by four worked examples of precision therapeutic approaches (PTAs) that are currently being taken forward in my laboratories and the laboratories of key collaborators for the treatment of chronic diseases. The chronic diseases of interest are chronic pain, epilepsy, cancer, non-alcoholic fatty liver disease (NAFLD) /diabetes type II, and infectious diseases such as influenza, Zika virus and HIV. By way of example, the right-hand side panel outlines a PTA for the treatment of cancer. In effect, a combination of bio-imaging and the application of image-guided targeting enable anti-cancer drug delivery nanoparticles to accumulate in a tumour lesion of choice and no obvious place elsewhere in the body. Accumulated nanoparticles may then release these anti-cancer drugs for local activity against tumour tissue saving other body tissues from unwanted exposure to these otherwise cytotoxic drugs. Implementation of such a PTA in the clinic could radically improve patient chemotherapy outcomes whilst reducing both required drug doses and side effects to an unprecedented degree. Such potential step changes in disease treatment explain why precision therapeutics should be an indispensable part of future medicine.