Ewa Kazimierska
Swansea University, UK
Title: How carbon nanotubes functional groups influence copper electrodeposition for electrical transmission?
Biography
Biography: Ewa Kazimierska
Abstract
Ultraconductive copper-carbon nanotubes composites are novel advanced materials for fabrication of lighter and more stable electrical wires to provide more efficient energy transport. To overcome the limitation of copper and CNTs incompatibility various types of pre-functionalised nanotubes were used. The dynamics of electrochemical deposition and dissolution of copper in the presence of amine- and carboxylic- functionalized multiwalled carbon nanotubes has been studied in detail using an electrochemical quartz crystal microbalance. It was found that carbon nanotube functionalization has critical influence on the values of mass and current densities of copper deposition. Presence of amine functionalization increases competitive hydrogen evolution without significantly affecting the total amount of deposited copper, whereas carboxylic groups clearly enhance deposition of larger amounts of smoother copper deposits. Molar mass analysis of deposited species reveals interactions of carbon nanotubes with the electrode surface dependent on the type of functionalization. In the light of present results, the effect of carbon nanotube functionalization should be closely considered in the development of electrochemical strategies for the integration of carbon nanotubes in metallic copper.