Yoshitaka Fujimoto
Tokyo Institute of Technology Japan
Title: Strain induced effects of hexagonal boron nitride atomic layers: A first-principles density-functional investigation
Biography
Biography: Yoshitaka Fujimoto
Abstract
Since experimental realization of a graphene sheet, two-dimensional atomic-layer sheets have received much attention from the viewpoint of nanoscience and nanotechnology. Among them, hexagonal boron nitride (h-BN) atomic-layer sheets are also expected to an important material since they possess several superior properties similar to a graphene. In the aspect of the electronic structures, both two materials exhibit considerably different features; graphene is a zero-gap material, whereas h-BN monolayer is a wide-gap material. One of the effective ways to tune electronic properties of nanomaterials is to apply strains to them. For example, the band gaps and the impurity states of h-BN monolayers are tunable by applying strains [1,2].
In this talk, I will report strain effects on the stabilities and the electronic properties of h-BN atomic layers using first-principles density-functional calculations [3,4]. I demonstrate the possible methods to tune the band gaps and the ionization energies of the impurity induced states in h-BN atomic layers. We also discuss the relationship among applied strains, band gaps and the impurity-related states of h-BN atomistic layers.